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Abstract  19 

The last deglaciation represents the most recent example of natural global warming associated with 20 

large-scale climate changes. In addition to the long-term global temperature increase, the last 21 

deglaciation onset is punctuated by a sequence of abrupt changes in the Northern Hemisphere. Such 22 

interplay between orbital- and millennial-scale variability is widely documented in paleoclimatic 23 

records but the underlying mechanisms are not fully understood. Limitations arise from the difficulty 24 

in constraining the sequence of events between external forcing, high- and low- latitude climate and 25 

environmental changes.  26 

Greenland ice cores provide sub-decadal-scale records across the last deglaciation and contain 27 

fingerprints of climate variations occurring in different regions of the Northern Hemisphere. Here, we 28 

combine new ice d-excess and 17O-excess records, tracing changes in the mid-latitudes, with ice δ18O 29 

records of polar climate. Within Heinrich Stadial 1, we demonstrate a decoupling between climatic 30 

conditions in Greenland and those of the lower latitudes. While Greenland temperature remains 31 

mostly stable from 17.5 to 14.7 ka, significant change in the mid latitudes of northern Atlantic takes 32 

place at ~16.2 ka, associated with warmer and wetter conditions of Greenland moisture sources. We 33 

show that this climate modification is coincident with abrupt changes in atmospheric CO2 and CH4 34 

concentrations recorded in an Antarctic ice core. Our coherent ice core chronological framework and 35 

comparison with other paleoclimate records suggests a mechanism involving two-step freshwater 36 

fluxes in the North Atlantic associated with a southward shift of the intertropical convergence zone.  37 
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 38 

Introduction 39 

The last deglaciation (~19 thousand to 11 thousand years before present, ka) is the most recent major 40 

reorganization of global climate and is thus extensively documented by proxy records from natural 41 

climate archives. The wealth of high-resolution records from well-dated archives and data synthesis 42 

obtained over the past decades show two modes of climate variability during this period (e.g. Denton 43 

et al., 2010, Clark et al., 2012). The first is a long-term increase in global surface temperature and 44 

atmospheric CO2 concentration between 18 and 11 ka. Superimposed on this is a sequence of 45 

centennial-scale transitions between three quasi-stable intervals documented in Northern 46 

Hemisphere temperature, namely (i) the Heinrich Stadial 1 (~17.5-14.7 ka), that encompasses the 47 

massive rafting episode known as Heinrich event 1 (from ~16 ka); (ii) the Bølling-Allerød warming phase 48 

(~14.7 to 12.9 ka) and (iii) the Younger Dryas cold phase (~12.9 to 11.7 ka). This three-step sequence 49 

coincides with rapid variations in the Atlantic Meridional Oceanic Circulation (AMOC) (Mc Manus et 50 

al., 2004), with evidence for a weak meridional overturning in the North Atlantic during the cold period 51 

encompassing Heinrich Stadial 1 and the Younger Dryas.  52 

Our understanding of the mechanisms at play during these North Atlantic cold phases remains limited. 53 

First, recent studies challenge the earlier attribution of the AMOC slowdown during Heinrich Stadial 1 54 

to the impact of the Iceberg Rafted Debris (IRD) from the Laurentide ice sheet through Hudson Strait 55 

(Alvarez-Solas et al., 2011). In particular, meltwater releases from the European ice sheet occurring as 56 

early as 19 or 20 ka may have played an important role in this AMOC slowdown (Toucanne et al., 2010; 57 

Stanford et al., 2011; Hodell et al., 2017).  58 

Second, major global reorganizations of the hydrological cycle have been demonstrated during 59 

Heinrich Stadial 1. They can be separated in two phases. In North America, a first time interval 60 

characterized by low lake levels (referred to as the “big dry”, 17.5 to 16.1 ka) was followed by a second 61 

time interval with high lake levels (referred to as the “big wet”, 16.1 to 14.7 ka) (Broecker et al., 2012), 62 
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both apparently occurring during a stable cold phase in Greenland temperature. The second phase of 63 

Heinrich Stadial 1 is also associated with a weak East Asian monsoon interval (Zhang et al., 2014), 64 

understood to reflect a southward shift of the Inter-tropical Convergence Zone (ITCZ). While there is 65 

growing evidence for large-scale reorganizations of climate and low- to mid- latitude atmospheric 66 

water cycle within Heinrich Stadial 1, the exact sequence of events is not known with sufficient 67 

accuracy to understand the links between changes in North Atlantic climate, AMOC, and the lower 68 

latitude water cycle.  69 

Linking changes in the high latitudes of the North Atlantic and the mid- to low- latitudes requires 70 

precise absolute chronologies such as those obtained from annual layer counting of Greenland ice (e.g. 71 

Andersen et al., 2006) or U/Th dating of speleothems (e.g. Zhang et al., 2014). Unfortunately, absolute 72 

dating uncertainties increase above a hundred years during the last deglaciation, precluding a direct 73 

comparison of proxy records at the centennial scale. In this study, we circumvent this difficulty by using 74 

a diverse range of proxy records measured on Greenland ice cores that represent both Greenland 75 

temperature and mid-latitude moisture source conditions.     76 

Analytical method 77 

Here, we present new water isotope records (18O, d-excess, 17O-excess) from the NGRIP ice core 78 

(NGRIP et al., 2004), reported on the annual-layer counted Greenland Ice Core Chronology 2005 79 

(hereafter GICC05, Rasmussen et al., 2006; Svensson et al., 2008), and associated with relatively small 80 

absolute uncertainties over the last deglaciation (maximum counting 1σ error of 100-200 yr). Other 81 

Greenland and Antarctic ice cores have been aligned on the GICC05 chronology, with a maximum 82 

relative dating uncertainty of 400 years over the last deglaciation (Rasmussen et al., 2008; Bazin et al.n 83 

2013; Veres et al., 2013). 84 

The new NGRIP 18O and D dataset was obtained at Laboratoire des Sciences du Climat et de 85 

l’Environnement (LSCE) using a laser cavity ring-down spectroscopy (CRDS) analyzer PICARRO. The 86 

accuracy for 18O and D measurements displayed here is about 0.1‰ and 1‰ respectively. This new 87 
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dataset completes the NGRIP high-resolution isotopic dataset published over the time period 11.5 to 88 

14.7 ka with 18O and D measured respectively at the University of Copenhagen and at the Institute 89 

of Arctic and Alpine Research (INSTAAR) Stable Isotope Lab (SIL) (University of Colorado), respectively. 90 

δ18O analyses were performed at the Niels Bohr Institute (University of Copenhagen) using a CO2 91 

equilibration technique (Epstein et al., 1953) with an analytical precision of 0.07‰. δD measurements  92 

at INSTAAR were made via an automated uranium reduction system coupled to a VG SIRA II dual inlet 93 

mass spectrometer (Vaughn et al., 1998). Analytical precision for δD is ±0.5‰ or better. Both series 94 

show similar 18O values, in agreement with the reference 18O series for NGRIP over the last climatic 95 

cycle (NGRIP community members, 2004) within error bars. However, while both LSCE and INSTAAR 96 

SIL d-excess series display the same 3.5‰ decrease over the onset of Bølling-Allerød, the mean d-97 

excess level differs by 2.5‰ between the two timeseries. Despite several home standard 98 

intercalibrations between the two laboratories, this difference remains unexplained and prevents any 99 

further discussion on the absolute NGRIP d-excess levels. The new and published NGRIP d-excess 100 

dataset are combined after a shift of the INSTAR SIL d-excess series by -2.5‰. 101 

In order to perform 17O-excess measurements on water samples at LSCE, water reacts with CoF3 to 102 

produce oxygen whose triple isotopic composition is measured by dual inlet against a reference O2 gas 103 

resulting in a mean uncertainty of 5 ppm (1 ) for the 17O-excess measurements (Barkan and Luz, 104 

2005). Every day, at least one home standard is run with the batch of samples to check the stability of 105 

the fluorination line and mass spectrometer and a series of water home standards whose 18O 106 

encompasses the SMOW – SLAP scale is run every month enabling to calibrate the 18O and 17O-excess 107 

values (Schoenemann et al., 2013).  108 

Results 109 

Ice core 18O (NGRIP community members, 2004) is a qualitative proxy for local surface temperature. 110 

Comparisons between ice core 18O data and paleotemperature estimates from borehole temperature 111 

profile inversion and abrupt temperature changes inferred from isotopic measurements on trapped 112 
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air showed that the 18O-temperature relationship at NGRIP varies from 0.3 to 0.5 ‰.°C-1 during 113 

glacial-interglacial periods (Buizert et al., 2014; Dahl-Jensen et al., 1998; Kindler et al., 2014). In 114 

addition to 18O records already available (NGRIP community members, 2004), we provide here new 115 

d-excess data from NGRIP during the last deglaciation. The second-order parameter d-excess (D-116 

8x18O) (Dansgaard, 1964) is used in Greenland ice cores to track past changes in evaporation 117 

conditions or shifts in moisture sources (Johnsen et al., 1989; Masson-Delmotte et al., 2005a). 118 

Evaporation conditions affect the initial vapor d-excess through the impact of surface humidity and 119 

sea surface temperature on kinetic fractionation (Jouzel et al., 1982). Recent vapour monitoring and 120 

modelling studies show that the d-excess signal of the moisture source can be preserved in polar 121 

vapour and precipitation after transportation towards polar regions (Bonne et al., 2015; Pfahl and 122 

Sodemann, 2014). This signal can however be altered during distillation due to the sensitivity of 123 

equilibrium fractionation coefficients to temperature, leading to alternative definitions using 124 

logarithm formulations for Antarctic ice cores (Uemura et al., 2012; Markle et al., 2016). Finally, 125 

changes in 18Osea water also influence 18O and d-excess in polar precipitation. Summarizing, d-excess in 126 

Greenland ice core is a complex tracer: interpreting its past variations in terms of changes in 127 

evaporation conditions (sea surface temperature or humidity) requires deconvolution of the effects of 128 

glacial-interglacial changes in 18Osea water and condensation temperature.  129 

Our dataset also encompasses new 17O-excess data from NGRIP. Defined as ln(17O+1)-130 

0.528*ln(18O+1)), 17O-excess provides complementary information to d-excess (Landais et al., 2008; 131 

Landais et al., 2012). At evaporation, d-excess and 17O-excess are both primarily influenced by the 132 

balance between kinetic and equilibrium fractionation, itself driven by relative humidity at the sea 133 

surface. During transport, while d-excess is influenced by distillation effects during atmospheric 134 

cooling, 17O-excess is largely insensitive to this effect, except at very low temperatures in Antarctica 135 

(Winkler et al., 2012). Conversely, 17O-excess is affected by recycling or mixing of air masses along the 136 

transport path from low to high latitudes (Risi et al., 2010), and by the range over which supersaturated 137 

conditions occur, itself affected for instance by changes in sea-ice extent or temperature along the 138 
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transport path (Schoenemann et al., 2014). Because of its logarithmic definition, 17O-excess is not 139 

sensitive to changes in 18Osea water given that the 17O-excess of global sea water remains constant with 140 

time.  141 

Our 1518 new measurements of 18O and d-excess on the NGRIP ice core cover the time period 14.5 142 

to 60 ka (Figure 1) and we present 454 duplicate measurements of 17O-excess over the time period 143 

ranging from 9.6 to 20 ka (Figure 2) (see methods for details). As previously reported for the central 144 

Greenland GRIP ice core (Masson-Delmotte et al., 2005b; Jouzel et al., 2005), the NGRIP 18O and d-145 

excess records exhibit a systematic anti-correlation during the abrupt Dansgaard-Oeschger (DO) events 146 

of the last glacial period and last deglaciation (Bølling-Allerød and Younger Dryas), with d-excess being 147 

higher during cool Greenland Stadials and lower during warm Greenland Interstadials.  148 

The origin of moisture may be different at GRIP and NGRIP. While both sites are expected to receive 149 

most of their moisture from the North Atlantic (30°N to 55°N, Landais et al., 2012) with modulation 150 

partly linked to sea ice extent (Rhines et al., 2014), the northwestern NGRIP site may also receive 151 

moisture from North Pacific (Langen and Vinther, 2009). Nevertheless, the two sites depict similar 152 

amplitudes of d-excess variations across DO events (Figure 1). We note that this contrasts with a 153 

slightly lower amplitude (typically by 1‰) of abrupt 18O changes at NGRIP compared to GRIP.  154 

The fact that d-excess increases (by 3.5 ± 1 ‰) when 18O decreases (by 4 ± 1 ‰) during Greenland 155 

stadials relative to interstadials may at least partly reflects the influence of local temperature changes 156 

on d-excess, challenging a simple interpretation in terms of changes in source conditions. We note one 157 

exception, the Heinrich Stadial 1 cold phase preceding the onset of the Bølling-Allerød at 14.7 ka. In 158 

this case, 18O remains almost stable from 17.5 to 14.7 ka on the three Greenland ice cores NGRIP, 159 

GRIP and GISP2 displayed on Figure 2. Over this period, 18O variations are smaller than 1 ‰, i.e. less 160 

than one fourth of the average amplitude in 18O changes across DO events, suggesting no large 161 

temperature change in Greenland during this period. The link between flat 18O and minimal 162 

temperature variability can be challenged since a mean temperature signal can be masked by a change 163 
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in seasonality of moisture source origin on the 18O record (Boyle et al., 1994; Krinner et al., 1997). 164 

However, our assumption of stable temperature is supported by constant 15N of N2 values in the GISP2 165 

and NGRIP ice cores (Buizert et al., 2014), 15N of N2 being an alternative paleothermometry tool in ice 166 

core that is not affected by processes within the water cycle (Severinghaus and Brook, 1999). In 167 

contrast to this almost stable 18O signal, d-excess depicts an average 2.2 ‰ increase at 16.1 ka (more 168 

than 60% of the average amplitude during DO events) with a larger amplitude at GRIP (2.7 ‰) than at 169 

NGRIP (1.7 ‰) (Figure 2). In this case, the increase in d-excess cannot be explained by any Greenland 170 

temperature change, and therefore demonstrates a decoupling between cold and stable Greenland 171 

temperatures and changing climatic conditions at lower latitudes during Heinrich Stadial 1 (see also 172 

SOM).  173 

While the 17O-excess level is similar at the Last Glacial Maximum (i.e. before 19 ka on Figure 2) and the 174 

Early Holocene (40 ppm), it also shows significant variations during the last deglaciation. Most of these 175 

variations co-vary with those of 18O such as the four main oscillations during the Bølling-Allerød and 176 

the onset and end of the Younger Dryas. They can be interpreted as parallel variations in the Greenland 177 

temperature and lower latitude climate with a possible contribution of local temperature through 178 

kinetic effects. Again, a major difference occurs during Heinrich Stadial 1. While the 18O record is 179 

relatively stable, 17O-excess exhibits a decreasing trend (strongest between 17.5 and 16.1 ka) before a 180 

minimum level is reached between 16.1 to 14.7 ka. We therefore observe a clear and synchronous 181 

signal in both d-excess and 17O-excess dated around 16.2 ka from statistical analysis (cf. section 182 

statistical analyses in SOM). These 17O-excess and d-excess transitions at 16.2 ka do not have any clear 183 

counterpart in 18O (cf section correlation in SOM) and no temperature variation at that time was 184 

recorded in the 15N of N2 record. We interpret these patterns as illustrating a reorganization of 185 

climatic conditions and/or water cycle at latitudes south of Greenland. A similar shift in 17O-excess has 186 

already been observed during Heinrich Stadial 4 in the NEEM ice core, while the 18O record exhibits a 187 

constant low level (Guillevic et al., 2014). This pattern was also attributed to a change in the water 188 

cycle and/or climate at lower latitudes.  189 
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Discussion 190 

The Greenland water stable isotope records demonstrate a change in the water cycle and/or climate 191 

at lower latitudes at 16.2 ka when Greenland conditions were relatively stable and cold. This change 192 

at low latitudes is confirmed by the high resolution atmospheric CH4 concentration record from the 193 

WAIS Divide ice core (Rhodes et al., 2015), presented on the same timescale (Figure 2). At 16.2 ka, the 194 

CH4 record indeed exhibits a 30 ppbv peak understood to reflect more CH4 production in Southern 195 

Hemisphere wetlands, driven by wetter conditions due to a southward shift of the tropical rainbelts 196 

associated with the ITCZ (Rhodes et al., 2915). The parallel increase of atmospheric CO2 concentration 197 

by 10 ppm in ~100 years (Marcott et al., 2013) is understood to result from increased terrestrial carbon 198 

fluxes or enhanced air-sea gas exchange in the Southern Ocean (Bauska et al., 2014). We also highlight 199 

an unusual characteristic of the bipolar seesaw pattern in Antarctic ice core 18O records at 16.2 ka. As 200 

observed during all Greenland Stadials of the last glacial period, Antarctic 18O also increases during 201 

Heinrich Stadial 1 (e.g. EPICA community members, 2006), through the warming phase of Antarctic 202 

Isotopic Maximum 1. The EPICA Dronning Maud Land (EDML) ice core, drilled in the Atlantic sector of 203 

Antarctica, shows an associated two step 18O increase. The first step, marked by a strong increasing 204 

trend, is followed by a change in slope at 16.2 ka. The second step is characterized by a slower 205 

increasing trend from 16.2 to 14.7 ka (EPICA community members, 2006; Stenni et al., 2011) (Figure 206 

2). The EDML 18O variations are expected to be closely connected to changes in AMOC due to the 207 

position of the ice core site on the Atlantic sector of the East Antarctic plateau. For other Antarctic 208 

sites, the change of slope around 16.2 ka is less clear, probably due to the damping effect of the 209 

Southern Ocean or because other climatic effects linked to atmospheric teleconnections with the 210 

tropics affect the Pacific and Indian sectors of Antarctica (Stenni et al., 2011, WAIS Divide members, 211 

2013  Buiron et al., 2012). A change in the teleconnections between West Antarctic climate and tropical 212 

regions is also observed around 16.2 ka (Jones et al., 2018). Summarizing, our synthesis of ice core 213 

records clearly demonstrates a climate shift at 16.2 ka, identified in proxy records sensitive to shifts in 214 

tropical hydrology (CH4), mid-latitude hydrological cycle changes in the Atlantic basin (Greenland 215 
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second order isotopic tracers), as well as in Antarctic climate dynamics in the Atlantic basin. This 216 

suggests some reorganization of water cycle in the Atlantic region (possibly involving AMOC) related 217 

to surface shifts in the ITCZ at 16.2 ka. This does not appear to affect the high latitudes of the North 218 

Atlantic as Greenland temperatures stay uniformly cold.  219 

At low latitudes, an ITCZ shift at 16.2 ka is clearly expressed through a weak monsoon interval in East 220 

Asian speleothem records and through change in hydrology in the low-latitude Pacific region and Brazil 221 

(Partin et al., 2007; Russell et al., 2014; Strikis et al., 2015). Since we have ruled out a local temperature 222 

signal at 16.2 ka in Greenland, the origin of the Greenland d-excess and 17O-excess changes around 223 

16.2 ka is also linked to changes in the climate of the source evaporative regions. When evaporation 224 

conditions change, they affect the proportion of kinetic versus equilibrium fractionation, and cause 225 

similar trends in both d-excess and 17O-excess. Both of them indeed increase when kinetic fractionation 226 

is more important, i.e. when relative humidity decreases, or when a change in sea ice modifies the 227 

evaporative conditions (Klein et al., 2015; Kopec et al., 2016). However, d-excess in the atmospheric 228 

vapor is affected by distillation toward higher latitudes, and strongly depends on the source-site 229 

temperature gradient, while 17O-excess preserves better the initial fingerprint of relative humidity of 230 

the evaporative region.  231 

As a result, the opposing trends observed in d-excess and 17O-excess at 16.2 ka can most probably be 232 

explained by an increase of both the relative humidity and the sea surface temperature of the 233 

evaporative source regions for Central and North Greenland. Despite known limitations (Winkler et al., 234 

2012, Schoenemann and Steig, 2016), the classical approach for inferring changes in source relative 235 

humidity and surface temperature from d-excess and 17O-excess in Greenland (Masson-Delmotte et 236 

al., 2005a; Landais et al., 2012) suggests respective increases of the order of 3°C and 8% for 237 

temperature and relative humidity of the source evaporative regions respectively. The larger d-excess 238 

increase at the transition between Phase 1 and Phase 2 of Heinrich Stadial 1 observed at GRIP 239 

compared to NGRIP is compatible with a larger proportion of GRIP moisture provided by the mid-240 
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latitude North Atlantic for this site. A larger increase in the sea surface temperature of the source of 241 

moisture for GRIP compared to NGRIP would also reduce the source-site temperature gradient and is 242 

fully compatible with the 2 ‰ less depleted level of 18O at GRIP, compared to NGRIP, during Phase 2. 243 

The increases in both temperature and relative humidity of the Greenland source regions suggest a 244 

more intense evaporative flux from lower latitudes starting at 16.2 ka. Such features could be 245 

explained either by a local climate signal of evaporative regions or by a southward shift of evaporative 246 

source regions toward warmer and more humid locations. This latter interpretation is in line with 247 

earlier interpretations of Greenland d-excess changes (Steffensen et al., 2018; Masson-Delmotte et al., 248 

2005b). The Greenland signals may also be at least partly explained by wetter conditions in the 249 

continental North America evaporative source regions, which are known to partly affect Greenland 250 

moisture today in addition to the main source in Northern Atlantic [38]. This relative humidity signal 251 

reconstructed from Greenland 17O-excess at the transition between Phase 1 and Phase 2 of Heinrich 252 

Stadial 1 coincides with the onset of the “big wet” period in North American records (Broecker and 253 

Putnam, 2012).  254 

We now explore paleoceanographic records to search for a fingerprint of climate and/or AMOC 255 

reorganization at 16.2 ka in the North Atlantic region and possible implications for our ice core records. 256 

Such comparison of ice core and marine sediment records appears insightful despite existing 257 

limitations attached to relative chronologies. First, high resolution proxy records of surface sea 258 

temperature in the East Atlantic, near Europe, depict a clear warming in the middle of Heinrich Stadial 259 

1 (Bard et al., 2000; Matrat et al., 2014, Figure 3). This signal is coherent with our interpretation of 260 

Greenland d-excess increase at 16.2 ka. In the deep Western Atlantic, no specific feature emerges 261 

between Phase 1 and Phase 2 of Heinrich Stadial 1 from the multi-centennial resolution record of 262 

Pa/Th, a proxy of AMOC strength (McManus et al., 2004). By contrast, a Pa/Th record from the Iberian 263 

margin (Gerhardi et al., 2005) at shallower depth (1500 m shallower than the western Atlantic record) 264 

shows a significant increase at 16.2 ka. These records may be interpreted as follows. A first 265 
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modification of the glacial oceanic ventilation occurs at deep depth as early as 18 ka. At 16.2 ka, AMOC 266 

may be further destabilized to additionally affect Pa/Th at shallower depths.  267 

Heinrich Stadial 1 is associated with at least two major Iceberg Rafted Debris (IRD) discharges first 268 

identified near the Iberian margin (Bard et al., 2000). They may reflect either the impact of changes in 269 

ocean conditions on ice shelf and ice sheet stabilities (Alvarez-Solas et al., 2011). Alternatively, the 270 

iceberg discharges themselves may have affected the AMOC, which is known to have major impacts 271 

on patterns of sea surface temperature, sea ice, atmospheric circulation, and climate over surrounding 272 

continents. The first IRD phase originated from ice sheet discharges from Northern Europe and Iceland, 273 

causing strong reorganizations in deep circulation of the North East Atlantic (Stanford et al., 2011, 274 

Grousset et al., 2001; Peck et al., 2006) while the second IRD phase is caused by discharges from the 275 

Laurentide ice sheet. Recent studies (e.g. Hodell et al., 2017, Toucanne et al., 2015) suggest that all IRD 276 

phases occur after 16.2 ka, during Heinrich Stadial 1 Phase 2. Before that, Heinrich Stadial Phase 1 is 277 

associated with a strong increase of sediment fluxes due to meltwater arrival through terrestrial 278 

terminating ice streams originating from both European and American sides of the North Atlantic as a 279 

response to the beginning of the deglaciation (Toucanne et al., 2015, Ullman et al., 2015, Leng et al., 280 

2018) (Figure 3). During the first slowdown of AMOC during Phase 1 of Heinrich Stadial 1, the 281 

associated warming of subsurface water would hence enable the destabilization of marine ice-shelves 282 

occurring during Phase 2 (Alvarez-Solas et al;, 2011). This second phase of Heinrich Stadial 1 is also 283 

associated with an extensive sea ice production, south of Greenland (Hillaire-Marcel and De Vernal, 284 

2008). The increase of North Atlantic sea ice extent and major iceberg discharges during the second 285 

phase of Heinrich Stadial 1 are coherent with a southward shift of the evaporative region providing 286 

moisture to Greenland supported by d-excess data, and a southward shift of tropical rainbelts (Chiang 287 

and Bitz, 2005), affecting southern hemisphere CH4 sources (Rhodes et al., 2015).  288 

Conclusions 289 
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Combined measurements of d-excess and 17O-excess along the NGRIP ice core demonstrate a 290 

decoupling between a cold and stable Greenland climate and changes in hydroclimate at lower 291 

latitudes during the Heinrich Stadial 1, also referred to as the “Mystery Interval” (Denton et al., 2006). 292 

While Greenland temperature remains mostly stable from 20 to 14.7 ka, a large-scale climatic 293 

reorganization takes place at 16.2 ka, associated with warmer and wetter conditions at the location of 294 

Greenland moisture sources. Based on a coherent temporal framework linking the different ice core 295 

records, we show that this event coincides with changes in the characteristics of the bipolar seesaw 296 

pattern as observed in the Atlantic sector of Antarctica, and has a fingerprint in global atmospheric 297 

composition through sharp changes in atmospheric CO2 and CH4 concentrations. 298 

Based on these new ice core records, their coherent chronology, and the comparison with marine and 299 

terrestrial records, we propose the following sequence of events during the last deglaciation. First, the 300 

initiation of Heinrich Stadial 1 occurs at 17.5 ka or earlier, with meltwater arrival from the terrestrial 301 

terminating ice-streams synchronous with a decrease in the North Atlantic sea surface temperature 302 

off-shore Europe, a first AMOC slowdown, drier conditions in North America, and an increase in 303 

Antarctic temperature as well as in atmospheric CO2 and CH4 concentrations. No fingerprint of this first 304 

phase of Heinrich Stadial 1 is identified in Greenland water stable isotope records: 18O (and thus local 305 

temperature), 17O-excess and d-excess remain stable. A possible explanation for such stability is that 306 

the high-latitude warming induced by the increase in the summer insolation at high latitude over the 307 

beginning of the deglaciation is counterbalanced in Greenland by regional changes in e.g. increased 308 

albedo due to sea ice extent or reduced transport of heat by the atmospheric circulation towards 309 

central Greenland, which both can result from a reduced AMOC strength. The global event occurring 310 

at 16.2 ka marks the onset of the second phase of Heinrich Stadial 1. It is associated with (i) strong 311 

iceberg discharges due to dynamical instability of the Laurentide ice sheet, probably induced by the 312 

accumulation of subsurface ocean heat due to a slowdown of AMOC during Phase 1, (ii) a widespread 313 

reorganization of the atmospheric water cycle in the Atlantic region, with significant changes in d-314 

excess and 17O-excess in Greenland, as well as (iii) the initiation of weak monsoon interval in East Asia 315 
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and (iv) the transition from a “big dry” episode to a “big wet” episodes in North America. We note that 316 

this sequence of events within Heinrich Stadial 1 is invisible in all available Greenland temperature 317 

proxy records, which only display an abrupt warming at the onset of the Bølling-Allerød (14.7 ka). 318 

Attached to a bipolar synchronised chronological framework, our new ice core data provide a unique 319 

benchmark to test the ability of Earth system models to correctly resolve the sub-millennial 320 

mechanisms at play during the last deglaciation, and especially the relationships between meltwater 321 

fluxes, the state of the North Atlantic ocean circulation, the Laurentide ice sheet instability, changes at 322 

the moisture sources of Greenland ice cores, the response of hydroclimate at low and high latitudes, 323 

as well as the net quantitative effects on global methane and carbon budgets. 324 
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 547 

 548 

Figure 1: water stable isotope records (18O and d-excess, in ‰) from GRIP and NGRIP ice cores 549 
reported on the GICC05 chronology (in thousands of years before year 2000 CE). From top to bottom: 550 

- d-excess from the NGRIP ice core (khaki: data obtained at INSTAAR SIL, Steffensen et al., 2008; 551 
dark green: data obtained at LSCE, this study); d-excess from the GRIP ice core (light green, 552 
Masson-Delmotte et al., 2005) 553 

- d-excess from the NGRIP ice core after correction of the shift between INSTAAR SIL and LSCE 554 
(dark green) dataset, and d-excess from the GRIP ice core (light green).  555 

- 18O from the NGRIP ice core (dark blue) datasets, 18O from the GRIP ice core (light blue). 556 
Grey intervals display Heinrich Stadials (HS). 557 

  558 
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 559 

Figure 2: A synthesis of ice core records over the last deglaciation on the synchronized GICC05/AICC2012 560 
timescales with an identification of two phases (1, orange box and 2, purple box) within Heinrich Stadial 561 
1 (HS1) as discussed in the text: we locate the transition between phases 1 and 2 at the timing of the 562 
sharp increase in CO2 and CH4 concentrations, both being global atmospheric composition signals. The 563 
Younger Dryas (YD) and Bølling-Allerød (BA) periods are also indicated. 564 
From top to bottom: 565 

- GRIP, NGRIP and GISP2 18O (light blue, dark blue and black respectively (Grootes et al., 1993; 566 
NGRIP community members, 2004) interpolated at a 20 years resolution 567 

- GRIP and NGRIP d-excess (light and dark green respectively: Jouzel et al., 2005, this study) 568 
interpolated at a 20 years resolution 569 
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- NGRIP 17O-excess (orange curve shows the original series and the red curve the 5 years running 570 
average, this study) 571 

- WAIS Divide CH4 (Rhodes et al., 2015) 572 
- WAIS Divide CO2 (Marcott et al., 2013) 573 

- EPICA Dronning Maud Land (EDML) 18Oice (EPICA community members, 2006) 574 
  575 

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-65
Manuscript under review for journal Clim. Past
Discussion started: 14 June 2018
c© Author(s) 2018. CC BY 4.0 License.



23 
 

 576 
Figure 3: The sequence of Phase 1 and Phase 2 of Heinrich Stadial 1 identified in Greenland records 577 
and in proxy records of North Atlantic SST, IRD events, and changes in East Asian hydroclimate. From 578 
top to bottom: 579 

- NGRIP (dark blue) and GRIP (light blue) 18O records  580 
- NGRIP (dark green) and GRIP (light green) d-excess records 581 
- Sea surface temperature (SST) for North Atlantic cores SU 81-18 (Bard et al., 2000) and ODP 582 

161-976 (Martrat et al., 2014). 583 

- Calcite 18O of Hulu cave (China, Zhang et al., 2014) 584 
- Ca/Sr from site U1308 in the IRD belt (Hodell et al., 2019) as signature from strong iceberg 585 

discharges from the Laurentide ice sheet.  586 
- Indications for Channel River sediment load (blue, sediment load; red, turbidite frequency) 587 

(Toucanne et al., 2010; 2015) as signature for meltwater input from European side. The 3 red 588 
circles indicate plumite layers resulting from outburst floods on the Eastern Canadian margin 589 
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(Leng et al., 2018), i.e. meltwater arrival from the North America side in the absence of strong 590 
iceberg discharge.  591 

The dashed horizontal line separates the ice core records on the GICC05 timescale from non ice core 592 
records on their own timescales.  593 

 594 
 595 
 596 
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